Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability

大脑皮层中癫痫相关 KCNQ2 和 KCNQ3 通道的条件性缺失会对神经元兴奋性产生不同的影响

阅读:5
作者:Heun Soh, Rima Pant, Joseph J LoTurco, Anastasios V Tzingounis

Abstract

KCNQ2 and KCNQ3 potassium channels have emerged as central regulators of pyramidal neuron excitability and spiking behavior. However, despite an abundance of evidence demonstrating that KCNQ2/3 heteromers underlie critical potassium conductances, it is unknown whether KCNQ2, KCNQ3, or both are obligatory for maintaining normal pyramidal neuron excitability. Here, we demonstrate that conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons in mice results in abnormal electrocorticogram activity and early death, whereas similar deletion of Kcnq3 does not. At the cellular level, Kcnq2-null, but not Kcnq3-null, CA1 pyramidal neurons show increased excitability manifested as a decreased medium afterhyperpolarization and a longer-lasting afterdepolarization. As a result, these Kcnq2-deficient neurons are hyperexcitable, responding to current injections with an increased number and frequency of action potentials. Biochemically, the Kcnq2 deficiency secondarily results in a substantial loss of KCNQ3 and KCNQ5 protein levels, whereas loss of Kcnq3 only leads to a modest reduction of other KCNQ channels. Consistent with this finding, KCNQ allosteric activators can still markedly dampen neuronal excitability in Kcnq3-null pyramidal neurons, but have only weak effects in Kcnq2-null pyramidal neurons. Together, our data reveal the indispensable function of KCNQ2 channels at both the cellular and systems levels, and demonstrate that pyramidal neurons have near normal excitability in the absence of KCNQ3 channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。