Inactivation of the quinone oxidoreductases NQO1 and NQO2 strongly elevates the incidence and multiplicity of chemically induced skin tumors

醌氧化还原酶 NQO1 和 NQO2 的失活大大增加了化学诱发皮肤肿瘤的发病率和多样性

阅读:6
作者:Jun Shen, Roberto J Barrios, Anil K Jaiswal

Abstract

The cytosolic quinone oxidoreductases NQO1 and NQO2 protect cells against oxidative stress by detoxifying quinones and preventing redox cycling. In this study, we used double knockout (DKO) mice deficient for NQO1 and NQO2 to investigate the role of these antioxidative enzymes in a two-stage model of inflammatory skin carcinogenesis. In this model, tumors are caused by exposure to topical carcinogen dimethylbenz(a)anthracene or benzo(a)pyrene (BP) followed by twice weekly application of proinflammatory phorbol 12-myristate 13-acetate. On this classic chemical carcinogenesis protocol, DKO mice showed a significantly higher skin tumor frequency and multiplicity compared with control wild-type or single knockout mice. Analysis of skin from wild-type and DKO mice exposed to BP for 6, 12, or 24 hours revealed a relative delay in the activation of p53, p63, p19ARF, and apoptosis in DKO mice, consistent with a negative modifier role for NQO1/NQO2 in carcinogenesis. Our findings offer genetic evidence of the significance of quinone oxidoreductases NQO1 and NQO2 in limiting chemical skin carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。