Upregulation of the GEF-H1 pathway after transient cerebral ischemia

短暂性脑缺血后 GEF-H1 通路的上调

阅读:6
作者:Tianfei Luo, Philip Roman, Chunli Liu, Xin Sun, Yujung Park, Bingren Hu

Abstract

The microtubule-dependent GEF-H1 pathway controls synaptic re-networking and overall gene expression via regulating cytoskeleton dynamics. Understanding this pathway after ischemia is essential to developing new therapies for neuronal function recovery. However, how the GEF-H1 pathway is regulated following transient cerebral ischemia remains unknown. This study employed a rat model of transient forebrain ischemia to investigate alterations of the GEF-H1 pathway using Western blotting, confocal and electron microscopy, dephosphorylation analysis, and pull-down assay. The GEF-H1 activity was significantly upregulated by: (i) dephosphorylation and (ii) translocation to synaptic membrane and nuclear structures during the early phase of reperfusion. GEF-H1 protein was then downregulated in the brain regions where neurons were destined to undergo delayed neuronal death, but markedly upregulated in neurons that were resistant to the same episode of cerebral ischemia. Consistently, GTP-RhoA, a GEF-H1 substrate, was significantly upregulated after brain ischemia. Electron microscopy further showed that neuronal microtubules were persistently depolymerized in the brain region where GEF-H1 protein was downregulated after brain ischemia. The results demonstrate that the GEF-H1 activity is significantly upregulated in both vulnerable and resistant brain regions in the early phase of reperfusion. However, GEF-H1 protein is downregulated in the vulnerable neurons but upregulated in the ischemic resistant neurons during the recovery phase after ischemia. The initial upregulation of GEF-H1 activity may contribute to excitotoxicity, whereas the late upregulation of GEF-H1 protein may promote neuroplasticity after brain ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。