Xylose metabolism in the pig

猪的木糖代谢

阅读:3
作者:Nichole F Huntley ,John F Patience

Abstract

It is important to understand if, and to what extent, the pig can utilize xylose as an energy source if xylanase releases free xylose in the small intestine. The experimental objectives were to determine the effects of industry-relevant dietary xylose concentrations and adaptation time on xylose retention efficiency and metabolism, diet digestibility and energy value, nitrogen balance, and hindgut fermentation. Forty-eight pigs were housed in metabolism crates and randomly assigned to one of four treatments with increasing D-xylose levels (n = 12/treatment) in 2 replications of a 22-d experiment with 3 collection periods. The control diet was xylose-free (0%), to which either 2, 4, or 8% D-xylose was added. Adaptation effects were assessed during three fecal and urine collection periods: d 5-7, 12-14, and 19-21. On d 22, pigs from the 0 and 8% treatments were euthanized; cecal and colon digesta were collected. Dietary xylose did not affect the total tract digestibility of dry matter, gross energy, or crude protein (P>0.10). Digesta short chain fatty acids concentrations and molar proportions and cecal pH were not different (P>0.10). This experiment utilized a targeted metabolomics approach to characterize and quantify urine xylose and metabolite excretion. Xylose retention decreased from 60% to 47% to 41% when pigs were fed diets containing 2, 4, or 8% xylose, respectively. In the 4 and 8% treatments, xylose retention was greater in the 2nd and 3rd collection periods compared to the 1st. A comprehensive pathway for xylose metabolism was proposed and D-threitol was confirmed as the major urinary metabolite of xylose. In conclusion, pigs can metabolize xylose, but with considerably lower efficiency than glucose, and may be able to adapt with time to utilize xylose more efficiently.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。