A new computational drug repurposing method using established disease-drug pair knowledge

一种利用已建立的疾病-药物配对知识的新型计算药物重定位方法

阅读:2
作者:Nafiseh Saberian ,Azam Peyvandipour ,Michele Donato ,Sahar Ansari ,Sorin Draghici

Abstract

Motivation: Drug repurposing is a potential alternative to the classical drug discovery pipeline. Repurposing involves finding novel indications for already approved drugs. In this work, we present a novel machine learning-based method for drug repurposing. This method explores the anti-similarity between drugs and a disease to uncover new uses for the drugs. More specifically, our proposed method takes into account three sources of information: (i) large-scale gene expression profiles corresponding to human cell lines treated with small molecules, (ii) gene expression profile of a human disease and (iii) the known relationship between Food and Drug Administration (FDA)-approved drugs and diseases. Using these data, our proposed method learns a similarity metric through a supervised machine learning-based algorithm such that a disease and its associated FDA-approved drugs have smaller distance than the other disease-drug pairs. Results: We validated our framework by showing that the proposed method incorporating distance metric learning technique can retrieve FDA-approved drugs for their approved indications. Once validated, we used our approach to identify a few strong candidates for repurposing. Availability and implementation: The R scripts are available on demand from the authors. Supplementary information: Supplementary data are available at Bioinformatics online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。