Improved molecular detection of mosaicism in Beckwith-Wiedemann Syndrome

改进贝克威思-威德曼综合征嵌合体的分子检测

阅读:3
作者:Samuel W Baker ,Kelly A Duffy ,Jennifer Richards-Yutz ,Matthew A Deardorff ,Jennifer M Kalish ,Arupa Ganguly

Abstract

Background: Beckwith-Wiedemann Syndrome (BWS) is characterised by overgrowth and tumour predisposition. While multiple epigenetic and genetic mechanisms cause BWS, the majority are caused by methylation defects in imprinting control regions on chromosome 11p15.5. Disease-causing methylation defects are often mosaic within affected individuals. Phenotypic variability among individuals with chromosome 11p15.5 defects and tissue mosaicism led to the definition of the Beckwith-Wiedemann Spectrum (BWSp). Molecular diagnosis of BWSp requires use of multiple sensitive diagnostic techniques to reliably detect low-level aberrations. Methods: Multimodal BWS diagnostic testing was performed on samples from 1057 individuals. Testing included use of a sensitive qRT-PCR-based quantitation method enabling identification of low-level mosaic disease, identification of CNVs within 11p15.5 via array comparative genomic hybridisation or qRT-PCR, and Sanger sequencing of CDKN1C. Results: A molecular diagnosis was confirmed for 27.4% of individuals tested, of whom 43.4% had mosaic disease. The presence of a single cardinal feature was associated with a molecular diagnosis of BWSp in 20% of cases. Additionally, significant differences in the prevalence of mosaic disease among BWS molecular subtypes were identified. Finally, the diagnostic yield obtained by testing solid tissue samples from individuals with negative blood testing results shows improved molecular diagnosis. Conclusion: This study highlights the prevalence of mosaic disease among individuals with BWSp and the increases in diagnostic yield obtained via testing both blood and solid tissue samples from affected individuals. Additionally, the results establish the presence of a molecular diagnosis in individuals with very subtle features of BWSp. Keywords: clinical genetics; diagnostics; epigenetics; genetics; imprinting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。