Novel regulation and dynamics of myosin II activation during epidermal wound responses

表皮伤口反应过程中肌球蛋白 II 活化的新调控和动力学

阅读:5
作者:Venkaiah Betapudi, Vandana Rai, Jordan R Beach, Thomas Egelhoff

Abstract

Wound healing in the skin is an important and complex process that involves 3-dimensional tissue reorganization, including matrix and chemokine-triggered cell migration, paracrine signaling, and matrix remodeling. The molecular signals and underlying mechanisms that stimulate myosin II activity during skin wound healing have not been elucidated. To begin understanding the signaling pathways involved in the activation of myosin II in this process, we have evaluated myosin II activation in migrating primary human keratinocytes in response to scratch wounding in vitro. We report here that myosin II activation and recruitment to the cytoskeleton in wounded keratinocytes are biphasic. Post-wounding, a rapid phosphorylation of myosin II regulatory light chain (RLC) occurs with resultant translocation of myosin IIA to the cell cortex, far in advance of the later polarization and cell migration. During this acute-phase of myosin II activation, pharmacological approaches reveal p38-MAP kinase and cytosolic calcium as having critical roles in the phosphorylation driving cytoskeletal assembly. Although p38-MAPK has known roles in keratinocyte migration, and known roles in leading-edge focal complex dynamics, to our knowledge this is the first report of p38-MAPK acting as an upstream activator of myosin II phosphorylation and assembly during any type of wound response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。