Identification of MiR-21-5p as a Functional Regulator of Mesothelin Expression Using MicroRNA Capture Affinity Coupled with Next Generation Sequencing

利用microRNA捕获亲和力结合下一代测序技术鉴定miR-21-5p为间皮素表达的功能性调节因子

阅读:2
作者:Chiara De Santi ,Sebastian Vencken ,Jonathon Blake ,Bettina Haase ,Vladimir Benes ,Federica Gemignani ,Stefano Landi ,Catherine M Greene

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate mRNA expression mainly by silencing target transcripts via binding to miRNA recognition elements (MREs) in the 3'untranslated region (3'UTR). The identification of bona fide targets is challenging for researchers working on the functional aspect of miRNAs. Recently, we developed a method (miR-CATCH) based on biotinylated DNA antisense oligonucleotides that capture the mRNA of interest and facilitates the characterisation of miRNAs::mRNA interactions in a physiological cellular context. Here, the miR-CATCH technique was applied to the mesothelin (MSLN) gene and coupled with next generation sequencing (NGS), to identify miRNAs that regulate MSLN mRNA and that may be responsible for its increased protein levels found in malignant pleural mesothelioma (MPM). Biotinylated MSLN oligos were employed to isolate miRNA::MSLN mRNA complexes from a normal cell line (Met-5A) which expresses low levels of MSLN. MiRNAs targeting the MSLN mRNA were identified by NGS and miR-21-5p and miR-100-5p were selected for further validation analyses. MiR-21-5p was shown to be able to modulate MSLN expression in miRNA mimic experiments in a panel of malignant and non-malignant cell lines. Further miRNA inhibitor experiments and luciferase assays in Mero-14 cells validated miR-21-5p as a true regulator of MSLN. Moreover, in vitro experiments showed that treatment with miR-21-5p mimic reduced proliferation of MPM cell lines. Altogether, this work shows that the miR-CATCH technique, coupled with NGS and in vitro validation, represents a reliable method to identify native miRNA::mRNA interactions. MiR-21-5p is suggested as novel regulator of MSLN with a possible functional role in cellular growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。