Identifying metabolic reprogramming phenotypes with glycolysis-lipid metabolism discoordination and intercellular communication for lung adenocarcinoma metastasis

识别与糖酵解-脂质代谢紊乱和细胞间通讯相关的代谢重编程表型,以促进肺腺癌转移

阅读:2
作者:Xin Li # ,Lefan Tang # ,Jiaxing Deng ,Xiuying Qi ,Juxuan Zhang ,Haitao Qi ,Mengyue Li ,Yixin Liu ,Wenyuan Zhao ,Yunyan Gu ,Lishuang Qi ,Xia Li

Abstract

Tumor metastasis imposes metabolic requirements for escaping from primary tissues, producing vulnerability in treatment. This study aimed to explore the metabolic reprogramming relevant to lung adenocarcinoma (LUAD) metastasis and decode the underlying intercellular alterations. Using the gene expression profiles of 394 LUAD samples derived from The Cancer Genome Atlas (TCGA), we identified 11 metastasis-related metabolic genes involved in glycolysis and lipid metabolism, and defined three metabolic reprogramming phenotypes (MP-I, -II, and -III) using unsupervised clustering. MP-III with the highest glycolytic and lowest lipid metabolic levels exhibited the highest metastatic potency and poorest survival in TCGA and six independent cohorts totaling 1,235 samples. Genomic analyses showed that mutations in TP53 and KEAP1, and deletions in SETD2 and PBRM1 might drive metabolic reprogramming in MP-III. Single-cell RNA-sequencing data from LUAD validated a metabolic evolutionary trajectory from normal to MP-II and MP-III, through MP-I. The further intercellular communications revealed that MP-III interacted uniquely with endothelial cells and fibroblasts in the ANGPTL pathway, and had stronger interactions with endothelial cells in the VEGF pathway. Herein, glycolysis-lipid dysregulation patterns suggested metabolic reprogramming phenotypes relevant to metastasis. Further insights into the oncogenic drivers and microenvironmental interactions would facilitate the treatment of LUAD metastasis in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。