Pituitary Adenylate Cyclase-Activating Peptide (PACAP), a Novel Secretagogue, Regulates Secreted Morphogens in Newborn Rat Retina

垂体腺苷酸环化酶激活肽 (PACAP),一种新型促分泌素,可调节新生大鼠视网膜中分泌的形态发生素

阅读:5
作者:Monika Lakk, Viktoria Denes, Karmen Kovacs, Orsolya Hideg, Bence F Szabo, Robert Gabriel

Conclusions

Our data are the first to shed light on PACAP as a secretagogue regulating a sustained production of morphogens, which in turn could enable PACAP to serve as a mitogen for retinal cells, to induce ganglion cell differentiation, and to contribute to RPE development.

Methods

Wistar rats at age postnatal day 1 were injected intravitreally with PACAP or PAC1 receptor antagonist (PACAP6-38, M65) or VPAC1 antagonist (PG97-269) alone or in combination. Retinas were removed at 3, 6, 12, or 24 hours after injection. Changes in mRNA level were assessed using quantitative PCR, whereas changes in protein levels were measured by Western blot.

Purpose

Pituitary adenylate cyclase-activating peptide (PACAP)1-38 has been reported to be responsible for regulation of a disparate array of developmental processes in the central nervous system, and its antiapoptotic effect has been revealed in numerous models, pointing to its relevance in the etiology of neurodegenerative disorders. However, its function in retinal development remains unclear. Here, we aimed to point out that versatility can be achieved through interaction with other regulators, in which PACAP can act indirectly on the retinal microenvironment.

Results

Intravitreal injection of PACAP or PAC1 receptor antagonists or the VPAC1 antagonist showed that PACAP receptors regulate the expression of five key secreted molecules (i.e., Fgf1, Bmp4, Wnt1, Gdf3, and Ihh), wherease other crucial morphogens (i.e., Fgf2, Fgf4, Fgf8, Fgf9, Shh, and Bmp9) were not affected. Pharmacologic dissection revealed that both PAC1 and VPAC1 induced downstream signaling and could cause upregulation of Fgf1, Bmp4, and Wnt1, whereas expression of Gdf3 might be mediated through the VPAC2 receptor. Conclusions: Our data are the first to shed light on PACAP as a secretagogue regulating a sustained production of morphogens, which in turn could enable PACAP to serve as a mitogen for retinal cells, to induce ganglion cell differentiation, and to contribute to RPE development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。