Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer

探索口腔癌的新型计算药物靶点及其相关关键通路

阅读:2
作者:Fatema Akhter ,Fawzia Haif Al Kahtani ,Zainah Mohammed Sambawa ,Deema Abdulrahman Alhassan ,Reema Abdulaziz AlSaif ,Tahsinul Haque ,Mohammad Khursheed Alam ,Md Tanvir Hasan ,Md Rakibul Islam ,Kawsar Ahmed ,Rehana Basri

Abstract

Oral cancer (OC) is a serious health concern that has a high fatality rate. The oral cavity has seven kinds of OC, including the lip, tongue, and floor of the mouth, as well as the buccal, hard palate, alveolar, retromolar trigone, and soft palate. The goal of this study is to look into new biomarkers and important pathways that might be used as diagnostic biomarkers and therapeutic candidates in OC. The publicly available repository the Gene Expression Omnibus (GEO) was to the source for the collection of OC-related datasets. GSE74530, GSE23558, and GSE3524 microarray datasets were collected for analysis. Minimum cut-off criteria of |log fold-change (FC)| > 1 and adjusted p < 0.05 were applied to calculate the upregulated and downregulated differential expression genes (DEGs) from the three datasets. After that only common DEGs in all three datasets were collected to apply further analysis. Gene ontology (GO) and pathway analysis were implemented to explore the functional behaviors of DEGs. Then protein−protein interaction (PPI) networks were built to identify the most active genes, and a clustering algorithm was also implemented to identify complex parts of PPI. TF-miRNA networks were also constructed to study OC-associated DEGs in-depth. Finally, top gene performers from PPI networks were used to apply drug signature analysis. After applying filtration and cut-off criteria, 2508, 3377, and 670 DEGs were found for GSE74530, GSE23558, and GSE3524 respectively, and 166 common DEGs were found in every dataset. The GO annotation remarks that most of the DEGs were associated with the terms of type I interferon signaling pathway. The pathways of KEGG reported that the common DEGs are related to the cell cycle and influenza A. The PPI network holds 88 nodes and 492 edges, and CDC6 had the highest number of connections. Four clusters were identified from the PPI. Drug signatures doxorubicin and resveratrol showed high significance according to the hub genes. We anticipate that our bioinformatics research will aid in the definition of OC pathophysiology and the development of new therapies for OC. Keywords: biomarkers; drug signature identification; key pathways; oral cancer; oral squamous cell carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。