Benzalkonium Chloride, Even at Low Concentrations, Deteriorates Intracellular Metabolic Capacity in Human Conjunctival Fibroblasts

苯扎氯铵即使在低浓度下也会降低人结膜成纤维细胞的细胞内代谢能力。

阅读:2
作者:Yuri Tsugeno ,Tatsuya Sato ,Megumi Watanabe ,Masato Furuhashi ,Araya Umetsu ,Yosuke Ida ,Fumihito Hikage ,Hiroshi Ohguro

Abstract

The objective of this study was to clarify the effects of benzalkonium chloride (BAC) on two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblast (HconF) cells, which are in vitro models replicating the epithelial barrier and the stromal supportive functions of the human conjunctiva. The cultured HconF cells were subjected to the following analyses in the absence and presence of 10-5% or 10-4% concentrations of BAC; (1) the barrier function of the 2D HconF monolayers, as determined by trans-endothelial electrical resistance (TEER) and FITC dextran permeability, (2) real-time metabolic analysis using an extracellular Seahorse flux analyzer, (3) the size and stiffness of 3D HconF spheroids, and (4) the mRNA expression of genes that encode for extracellular matrix (ECM) molecules including collagen (COL)1, 4 and 6, and fibronectin (FN), α-smooth muscle actin (α-SMA), ER stress related genes including the X-box binding protein-1 (XBP1), the spliced XBP1 (sXBP1) glucose regulator protein (GRP)78, GRP94, and the CCAAT/enhancer-binding protein homologous protein (CHOP), hypoxia inducible factor 1α (HIF1α), and Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α). In the presence of BAC, even at low concentrations at 10-5% or 10-4%, the maximal respiratory capacity, mitochondrial respiratory reserve, and glycolytic reserve of HconF cells were significantly decreased, although the barrier functions of 2D HconF monolayers, the physical properties of the 3D HconF spheroids, and the mRNA expression of the corresponding genes were not affected. The findings reported herein highlight the fact that BAC, even such low concentrations, may induce unfavorable adverse effects on the cellular metabolic capacity of the human conjunctiva. Keywords: 3D spheroid cultures; benzalkonium chloride (BAC); human conjunctival fibroblast (HconF).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。