DNMT3A-mediated epigenetic silencing of SOX17 contributes to endothelial cell migration and fibroblast activation in wound healing

DNMT3A 介导的 SOX17 表观遗传沉默有助于伤口愈合过程中的内皮细胞迁移和成纤维细胞活化

阅读:5
作者:Xiaoping Yu, Xiaoting Ma, Junli Zhou

Background

Wound healing, especially impaired chronic wound healing, poses a tremendous challenge for modern medicine. Understanding the molecular mechanisms underlying wound healing is essential to the development of novel therapeutic strategies.

Conclusion

DNMT3A-mediated downregulation of SOX17 facilitates wound healing by promoting endothelial cell migration and fibroblast activation.

Methods

A wound-healing mouse model was established to analyze histopathological alterations during wound healing, and the expression of SRY-box transcription factor 17 (SOX17), DNA methyltransferase 3 alpha (DNMT3A), and a specific fibroblast marker S100 calcium-binding protein A4 (S100A4) in wound skin tissues was tested by immunofluorescence (IF) assay. Cell proliferation and migration were evaluated using 5-ethynyl-2'-deoxyuridine (EdU) and Transwell migration assays. RT-qPCR and western blotting were used to measure RNA and protein expression. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of transforming growth factor-beta (TGF-β). Chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) and DNA pull-down assays were performed to confirm the interaction between DNMT3A and the CpG island of the SOX17 promoter. Promoter methylation was examined by pyrosequencing.

Results

SOX17 and DNMT3A expression were regularly regulated during the different phases of wound healing. SOX17 knockdown promoted HUVEC migration and the production and release of TGF-β. Through establishing an endothelial cells-fibroblasts co-culture model, we found that SOX17 knockdown in HUVECs activated HFF-1 fibroblasts, which expressed α-smooth muscle actin (α-SMA) and type I collagen (COL1). DNMT3A overexpression reduces SOX17 mRNA levels. ChIP-qPCR and DNA pull-down assays verified the interaction between DNMT3A and CpG island in the SOX17 promoter region. Pyrosequencing confirmed that DNMT3A overexpression increased the methylation level of the SOX17 promoter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。