Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson's disease

基于机器学习的帕金森病铜绿假单胞菌感染相关生物标志物和免疫浸润特征分析

阅读:2
作者:Songyun Zhao ,Li Zhang ,Wei Ji ,Yachen Shi ,Guichuan Lai ,Hao Chi ,Weiyi Huang ,Chao Cheng

Abstract

Background: Parkinson's disease (PD) is a neurodegenerative disease commonly seen in the elderly. On the other hand, cuprotosis is a new copper-dependent type of cell death that can be observed in various diseases. Methods: This study aimed to identify potential novel biomarkers of Parkinson's disease by biomarker analysis and to explore immune cell infiltration during the onset of cuprotosis. Gene expression profiles were retrieved from the GEO database for the GSE8397, GSE7621, GSE20163, and GSE20186 datasets. Three machine learning algorithms: the least absolute shrinkage and selection operator (LASSO), random forest, and support vector machine-recursive feature elimination (SVM-RFE) were used to screen for signature genes for Parkinson's disease onset and cuprotosis-related genes (CRG). Immune cell infiltration was estimated by ssGSEA, and cuprotosis-related genes associated with immune cells and immune function were examined using spearman correlation analysis. Nomogram was created to validate the accuracy of these cuprotosis-related genes in predicting PD disease progression. Classification of Parkinson's specimens using consensus clustering methods. Result: Three PD datasets from the Gene Expression Omnibus (GEO) database were combined after eliminating batch effects. By ssGSEA, we identified three cuprotosis-related genes ATP7A, SLC31A1, and DBT associated with immune cells or immune function in PD and more accurate for the diagnosis of Parkinson's disease course. Patients could benefit clinically from a characteristic line graph based on these genes. Consistent clustering analysis identified two subtypes, with the C2 subtype exhibiting higher immune cell infiltration and immune function. Conclusion: In conclusion, our study reveals that several newly identified cuprotosis-related genes intervene in the progression of Parkinson's disease through immune cell infiltration. Keywords: PD; bioinformatics analysis; consensus clustering; cuprotosis; immune cell infiltration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。