Diminished expression of major histocompatibility complex facilitates the use of human induced pluripotent stem cells in monkey

主要组织相容性复合体的表达减少促进了人类诱导性多能干细胞在猴子中的应用

阅读:6
作者:Xiaokai Wang, Meng Lu, Xiaoyu Tian, Yansong Ren, Yijun Li, Meng Xiang, Sifeng Chen

Background

Stem cells, including induced pluripotent stem cells (iPSCs), have tremendous potential in health care, though with several significant limitations. Each of the limitations, including immunogenicity, may block most of the therapeutic potentials. Beta2 microglobulin (B2M) and MHC II transactivator (CIITA) are critical for MHC I and II, respectively. MHCs are responsible for immunogenic recognition.

Conclusions

Having these iPSCs with diminished immunogenicity-recognizable to allogeneic recipient may provide unlimited reproducible, universal, standardized "ready-to-use" iPSCs and relevant derivatives for clinical applications.

Methods

B2M and CIITA were knocked out from human iPSCs, either separately or simultaneously. The effects of single or dual knockout of B2M and CIITA on iPSC properties were evaluated in a xenogeneic model of human-to-monkey transplantation.

Results

B2M or CIITA knockout in human induced pluripotent stem cells (iPSCs) diminishes the expression of MHC I or II alleles, respectively, without changing iPSC pluripotency. Dual knockout was better than either single knockout in preserving the ability of human iPSCs to reduce infiltration of T and B lymphocytes, survive, and promote wound healing in monkey wound lesions. The knockouts did not affect the xenogeneic iPSC-induced infiltration of macrophages and natural killer cells. They, however, decreased the iPSC-promoted proliferation of allogeneic peripheral blood mononuclear cells and T lymphocytes in vitro, although not so for B lymphocytes isolated from healthy human donors. Although the dual knockout cells survived long enough for suiting therapeutic needs, the cells eventually died, possibly due to innate immune response against them, thereby eliminating long-term risks. Conclusions: Having these iPSCs with diminished immunogenicity-recognizable to allogeneic recipient may provide unlimited reproducible, universal, standardized "ready-to-use" iPSCs and relevant derivatives for clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。