Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors

用贝伐单抗治疗胃肠道癌细胞可通过 PI3K-AKT、HIF-1α 和 VEGF 受体激活涉及端粒酶催化亚基 hTERT 的 VEGF 自身调节机制

阅读:6
作者:Nadine Mahfouz, Roula Tahtouh, Nada Alaaeddine, Joelle El Hajj, Riad Sarkis, Ray Hachem, Issam Raad, George Hilal

Background

Targeting angiogenesis has been considered a promising treatment of choice for a large number of malignancies, including gastrointestinal cancers. Bevacizumab is an anti-vascular endothelial growth factor (anti-VEGF) being used for this

Conclusions

Taken together, our results suggest that bevacizumab treatment activates a VEGF autoregulatory mechanism involving hTERT and VEGF receptors and that an inhibition of this pathway could improve tumor cell response to anti-VEGF treatment.

Methods

AGS (gastric cancer), Caco-2 (colorectal cancer) and HepG2/C3A (hepatocellular carcinoma), were treated with telomerase inhibitors BIBR-1232 (10μM) and costunolide (10μM), with bevacizumab (Avastin® at 5 ng/ml or 100μg/ml) or with a combination of both types of inhibitors. VEGF and hTERT mRNA levels, and telomerase activity were detected by RT-PCR. VEGF levels were quantified by ELISA. Telomerase was knocked down using hTERT siRNA and hTERT was overexpressed in the telomerase negative cell line, Saos-2 (osteosarcoma), using constructs expressing either wild type hTERT (hTERT-WT) or dominant negative hTERT (hTERT-DN). Tube formation by HUVECs was assessed using ECMatrix™ (EMD Millipore).

Results

Our results showed that telomerase regulates VEGF expression and secretion through its catalytic subunit hTERT in AGS, Caco2, and HepG2/C3A, independent of its catalytic activity. Interestingly, VEGF inhibition with bevacizumab (100μg/ml) increased hTERT expression 42.3% in AGS, 94.1% in Caco2, and 52.5% in HepG2/C3A, and increased telomerase activity 30-fold in AGS, 10.3-fold in Caco2 and 8-fold in HepG2/C3A. A further investigation showed that VEGF upregulates hTERT expression in a mechanism that implicates the PI3K/AKT/mTOR pathway and HIF-1α. Moreover, bevacizumab treatment increased VEGFR1 and VEGFR2 expression in cancer cells and human umbilical vein endothelial cells (HUVECs) through hTERT. Thus, the combination of bevacizumab with telomerase inhibitors decreased VEGF expression and secretion by cancer cells, inhibited VEGFR1 and VEGFR2 upregulation, and reduced tube formation by HUVECs. Conclusions: Taken together, our results suggest that bevacizumab treatment activates a VEGF autoregulatory mechanism involving hTERT and VEGF receptors and that an inhibition of this pathway could improve tumor cell response to anti-VEGF treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。