Uptake of Aβ by OATPs might be a new pathophysiological mechanism of Alzheimer disease

OATP 吸收 Aβ 可能是阿尔茨海默病的一种新病理生理机制

阅读:6
作者:Jinhua Wen #, Menghua Zhao #, Wenxiong Sun, Xiaohua Cheng, Luyi Yu, Duanwen Cao, Pu Li

Background

The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is a characteristic of Alzheimer's disease (AD), at the same time, it is possible alterations of liver function could affect brain Aβ levels through changes in blood Aβ concentration. Over the last decade, a number of reports have shown that P-glycoprotein (encoded by ABC1B1) actively mediates the efflux transport of Aβ peptides. However, the mechanism by which Aβ peptides enter the cells is not clear. In the preliminary study, we found that the protein expression of organic anion transporting Polypeptide 1a4 (OATP1B1) in the liver tissue of mice with AD was significantly higher than that in the normal mice. In contrast, the protein expression of Oatp1a4 in the brain significantly decreased in mice with AD. OATP1B1, an important drug transporter might be related to the pathophysiology of AD.

Conclusions

This is a novel and interesting finding and OATP1B1 can be investigated as a new treatment target for AD.

Results

In this study, we established an OATP1B1-GFP-HEK293T cell model to confirm the OATP1B1 mediated transport of Aβ1-42. Compared to the control group of GFP-HEK293Tcells, the uptake of Aβ1-42 protein in the OATP1B1-GFP-HEK293T group increased significantly with the increase in concentration of Aβ1-42, and also increased significantly with an increase in the duration of incubation. Similar results were observed in the flow cytometry experiment, and the uptake of Aβ1-42in HEK293T-OATP1B1 cells was almost twice that in the control group. These results indicate that OATPs may act as an important "carrier" for the transport of Aβ1-42 from the blood to the tissues, including liver and brain. Conclusions: This is a novel and interesting finding and OATP1B1 can be investigated as a new treatment target for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。