Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell

间充质干细胞衍生的外泌体培养巨噬细胞通过促进胞吐作用和 IL-17+ 调节性 T 细胞募集来缓解系统性红斑狼疮

阅读:7
作者:Mingchao Zhang #, Takerra K Johnson-Stephenson #, Weiran Wang, Yang Wang, Jing Li, Limin Li, Ke Zen, Xi Chen, Dihan Zhu

Background

Anti-inflammatory polarized macrophages are reported to alleviate systemic lupus erythematosus (SLE). Our previous studies have demonstrated that exosomes from adipose-derived stem cells promote the anti-inflammatory polarization of macrophages. However, the possible therapeutic effect of exosomes from stem cells on SLE remains unexplored.

Conclusion

Our findings provide evidence that exosomes from BMMSCs promote the anti-inflammatory polarization of macrophages. These macrophages alleviate SLE nephritis in lupus mice by consuming apoptotic debris and inducing the recruitment of Treg cells. We identify that exosomal delivery of miR-16 and miR-21 is a significant contributor to the polarization of macrophages.

Methods

Exosomes were isolated from the conditioned medium of bone marrow-derived mesenchymal stem cells using ultrafiltration and size-exclusion chromatography and were identified by nanoparticle tracking analysis and immunoblotting of exosomal-specific markers. Macrophages were collected from the MRL/lpr mouse kidney. The phenotype of macrophages was identified by immunoblotting for intracellular markers-inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), and flow cytometry for macrophage markers F4/80, CD86, CD206, B7H4, and CD138. Pristane-induced murine lupus nephritis models were employed for in vivo study.

Results

When macrophages from the kidney of the MRL/lpr mice were treated with exosomes from bone marrow-derived mesenchymal stem cells (BM-MSCs), the upregulation of CD206, B7H4, CD138, Arg-1, CCL20, and anti-inflammatory cytokines was observed, which suggested that the macrophages were polarized to a specific anti-inflammatory phenotype. These anti-inflammatory macrophages produced low levels of reactive oxygen species (ROS) but had a high efferocytosis activity and promoted regulatory T (Treg) cell recruitment. Moreover, exosome injection stimulated the anti-inflammatory polarization of macrophages and increased the production of IL-17+ Treg cells in a pristane-induced murine lupus nephritis model. We observed that exosomes from BMMSCs depleted of microRNA-16 (miR-16) and microRNA-21 (miR-21) failed to downregulate PDCD4 and PTEN in macrophages, respectively, and attenuated exosome-induced anti-inflammatory polarization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。