Legume Fingerprinting through Lipid Composition: Utilizing GC/MS with Multivariate Statistics

利用脂质组成进行豆类指纹图谱分析:结合气相色谱-质谱联用和多元统计方法

阅读:2
作者:Marko Ilić ,Kristian Pastor ,Aleksandra Ilić ,Mirjana Vasić ,Nataša Nastić ,Đura Vujić ,Marijana Ačanski

Abstract

This study presents a tentative analysis of the lipid composition of 47 legume samples, encompassing species such as Phaseolus spp., Vicia spp., Pisum spp., and Lathyrus spp. Lipid extraction and GC/MS (gas chromatography with mass spectrometric detection) analysis were conducted, followed by multivariate statistical methods for data interpretation. Hierarchical Cluster Analysis (HCA) revealed two major clusters, distinguishing beans and snap beans (Phaseolus spp.) from faba beans (Vicia faba), peas (Pisum sativum), and grass peas (Lathyrus sativus). Principal Component Analysis (PCA) yielded 2D and 3D score plots, effectively discriminating legume species. Linear Discriminant Analysis (LDA) achieved a 100% accurate classification of the training set and a 90% accuracy of the test set. The lipid-based fingerprinting elucidated compounds crucial for discrimination. Both PCA and LDA biplots highlighted squalene and fatty acid methyl esters (FAMEs) of 9,12,15-octadecatrienoic acid (C18:3) and 5,11,14,17-eicosatetraenoic acid (C20:4) as influential in the clustering of beans and snap beans. Unique compounds, including 13-docosenoic acid (C22:1) and γ-tocopherol, O-methyl-, characterized grass pea samples. Faba bean samples were discriminated by FAMEs of heneicosanoic acid (C21:0) and oxiraneoctanoic acid, 3-octyl- (C18-ox). However, C18-ox was also found in pea samples, but in significantly lower amounts. This research demonstrates the efficacy of lipid analysis coupled with multivariate statistics for accurate differentiation and classification of legumes, according to their botanical origins. Keywords: GC/MS analysis; food authentication; legumes; lipid profiles; multivariate statistics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。