Modeling the Initiation Phase of the Catalytic Cycle in the Glycyl-Radical Enzyme Benzylsuccinate Synthase

模拟甘氨酰自由基酶苄基琥珀酸合酶催化循环的起始阶段

阅读:2
作者:Maciej Szaleniec ,Gabriela Oleksy ,Anna Sekuła ,Ivana Aleksić ,Rafał Pietras ,Marcin Sarewicz ,Kai Krämer ,Antonio J Pierik ,Johann Heider

Abstract

The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。