The Effect of Dietary Vitamin K1 Supplementation on Trabecular Meshwork and Retina in a Chronic Ocular Hypertensive Rat Model

膳食维生素 K1 补充对慢性高眼压大鼠小梁网和视网膜的影响

阅读:7
作者:Chaohua Deng, Ke Yao, Fei Peng, Bowen Zhao, Zhiqi Chen, Wei Chen, Yin Zhao, Hong Zhang, Junming Wang

Conclusions

High VitK1 intake inhibited the loss of retinal ganglion cells during glaucomatous injury, probably by increasing the expression of matrix gla protein. A transient decrease in the IOP was observed in the high VitK1 group, implying a potential effect of VitK1 on aqueous outflow. Retinal ganglion cells protection by high VitK1 supplementation may be due to the IOP-lowering effects as well as neuroprotective effect. Further research is required to delineate these processes.

Methods

Rats were randomly divided into two groups: standard diet and high vitamin K1 (VitK1) diet (300 mg VitK1/kg diet). Induction of chronic ocular hypertension by episcleral vein cauterization was performed on the right eye. The left eye with sham operation served as controls. Rats received standard or high VitK1 diets for 5 weeks after surgery until the end of experiment. Immunohistochemistry analyses of the retina and trabecular meshwork were performed. The change in coagulation function and IOP were evaluated.

Purpose

The pathophysiologic relationship between vitamin K and glaucoma remains largely unknown. The aim of the study was to explore the effect of dietary vitamin K supplementation in a rat glaucoma model.

Results

We observed a significant declined IOP at 2 weeks after surgery in the high VitK1 group compared with the control group. High VitK1 showed no significant effect on the body weight, rat phenotypes, or coagulation function. High VitK1 significantly inhibited the loss of retinal ganglion cells in the retina and increased the expression of matrix gla protein. High VitK1 also ameliorated the collapsed trabecular meshwork structure and increased collagen staining in the trabecular meshwork. Conclusions: High VitK1 intake inhibited the loss of retinal ganglion cells during glaucomatous injury, probably by increasing the expression of matrix gla protein. A transient decrease in the IOP was observed in the high VitK1 group, implying a potential effect of VitK1 on aqueous outflow. Retinal ganglion cells protection by high VitK1 supplementation may be due to the IOP-lowering effects as well as neuroprotective effect. Further research is required to delineate these processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。