Conclusions/interpretation
High expression of hIAPP in response to pregnancy recapitulates mechanisms contributing to beta cell stress in type 2 diabetes. We hypothesise that, in individuals prone to type 2 diabetes, pregnancy-induced increased expression of IAPP inflicts beta cell damage that persists and is compounded by subsequent additive stress such as further pregnancy. The hTG mouse model is a novel model for pregnancy-related diabetes.
Methods
We evaluated the impact of a first and second pregnancy on glucose homeostasis, beta cell mass and turnover and markers of beta cell stress in hIAPP transgenic (hTG) mice.
Results
Pregnancy induced both endoplasmic reticulum stress and oxidative stress and compromised autophagy in beta cells in hTG mice, which are characteristic of beta cells in type 2 diabetes. Beta cell stress persisted after pregnancy, resulting in subsequent diabetes before or during a second pregnancy. Conclusions/interpretation: High expression of hIAPP in response to pregnancy recapitulates mechanisms contributing to beta cell stress in type 2 diabetes. We hypothesise that, in individuals prone to type 2 diabetes, pregnancy-induced increased expression of IAPP inflicts beta cell damage that persists and is compounded by subsequent additive stress such as further pregnancy. The hTG mouse model is a novel model for pregnancy-related diabetes.
