MiRNA-1/133a clusters regulate adrenergic control of cardiac repolarization

MiRNA-1/133a 簇调节肾上腺素能对心脏复极的控制

阅读:6
作者:Johannes Besser, Daniela Malan, Katharina Wystub, Angela Bachmann, Astrid Wietelmann, Philipp Sasse, Bernd K Fleischmann, Thomas Braun, Thomas Boettger

Abstract

The electrical properties of the heart are primarily determined by the activity of ion channels and the activity of these molecules is permanently modulated and adjusted to the physiological needs by adrenergic signaling. miRNAs are known to control the expression of many proteins and to fulfill distinct functions in the mammalian heart, though the in vivo effects of miRNAs on the electrical activity of the heart are poorly characterized. The miRNAs miR-1 and miR-133a are the most abundant miRNAs of the heart and are expressed from two miR-1/133a genomic clusters. Genetic modulation of miR-1/133a cluster expression without concomitant severe disturbance of general cardiomyocyte physiology revealed that these miRNA clusters govern cardiac muscle repolarization. Reduction of miR-1/133a dosage induced a longQT phenotype in mice especially at low heart rates. Longer action potentials in cardiomyocytes are caused by modulation of the impact of β-adrenergic signaling on the activity of the depolarizing L-type calcium channel. Pharmacological intervention to attenuate β-adrenergic signaling or L-type calcium channel activity in vivo abrogated the longQT phenotype that is caused by modulation of miR-1/133a activity. Thus, we identify the miR-1/133a miRNA clusters to be important to prevent a longQT-phenotype in the mammalian heart.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。