Efficient and Stable Luminescence from Mn2+ in Core and Core-Isocrystalline Shell CsPbCl3 Perovskite Nanocrystals

核和核同晶壳 CsPbCl3 钙钛矿纳米晶体中 Mn2+ 高效稳定发光

阅读:8
作者:Kunyuan Xu, Chun Che Lin, Xiaobin Xie, Andries Meijerink

Abstract

There has been a growing interest in applying CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) for optoelectronic application. However, research on doping of this new class of promising NCs with optically active and/or magnetic transition metal ions is still limited. Here we report a facile room temperature method for Mn2+ doping into CsPbCl3 NCs. By addition of a small amount of concentrated HCl acid to a clear solution containing Mn2+, Cs+, and Pb2+ precursors, Mn2+-doped CsPbCl3 NCs with strong orange luminescence of Mn2+ at ∼600 nm are obtained. Mn2+-doped CsPbCl3 NCs show the characteristic cubic phase structure very similar to the undoped counterpart, indicating that the nucleation and growth mechanism are not significantly modified for the doping concentrations realized (0.1 at. % - 2.1 at. %). To enhance the Mn2+ emission intensity and to improve the stability of the doped NCs, isocrystalline shell growth was applied. Growth of an undoped CsPbCl3 shell greatly enhanced the emission intensity of Mn2+ and resulted in lengthening the radiative lifetime of the Mn2+ emission to 1.4 ms. The core-shell NCs also show superior thermal stability and no thermal degradation up to at least 110 °C, which is important in applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。