Oral treatment with a gamma-secretase inhibitor improves long-term potentiation in a mouse model of Alzheimer's disease

口服 γ-分泌酶抑制剂治疗可改善阿尔茨海默病小鼠模型的长期增强作用

阅读:6
作者:Matthew Townsend, Yujie Qu, Audrey Gray, Zhenhua Wu, Tiffany Seto, Mike Hutton, Mark S Shearman, Richard E Middleton

Abstract

The beta-amyloid peptide (Abeta) is thought to play a critical role in the pathophysiology of Alzheimer's disease (AD). To study the effects of Abeta on the brain, transgenic mouse models have been developed that express high levels of Abeta. These mice show some features of AD, including amyloid plaques and mild cognitive impairment, but not others such as progressive neurodegeneration. We investigated the age-dependent effects of Abeta on synaptic physiology in Tg2576 mice that express human Abeta. We report that both basal synaptic activity and long-term potentiation (LTP), as measured in the CA1 region of the hippocampus, were compromised by 7 months of age before plaque deposition. Despite a persistent increase in Abeta levels with age, LTP recovered in 14-month-old mice, with no further loss of basal activity compared with activity measured in 7-month-old mice. Previous work has shown that inhibitors of gamma-secretase, an enzyme critical for Abeta synthesis, can significantly reduce Abeta production and plaque formation in Tg2576 mice. Our data demonstrate that 7-month-old Tg2576 mice treated with an orally available gamma-secretase inhibitor showed a significant improvement in synaptic function and plasticity within days, and the effect was correlated with the extent and duration of Abeta reduction. These results indicate that recovery from Abeta-mediated synaptotoxicity can occur rapidly with Abeta-lowering therapies. These findings highlight some of the strengths and limitations of using Abeta-overexpressing mouse models for Alzheimer's drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。