A gene dosage-dependent effect unveils NBS1 as both a haploinsufficient tumour suppressor and an essential gene for SHH-medulloblastoma

基因剂量依赖性效应揭示 NBS1 既是单倍体不足的肿瘤抑制因子,也是 SHH 髓母细胞瘤的必需基因

阅读:3
作者:Marialaura Petroni, Francesca Fabretti, Stefano Di Giulio, Vittoria Nicolis di Robilant, Veronica La Monica, Marta Moretti, Francesca Belardinilli, Francesca Bufalieri, Anna Coppa, Paola Paci, Alessandro Corsi, Enrico De Smaele, Sonia Coni, Gianluca Canettieri, Lucia Di Marcotullio, Zhao-Qi Wang, Gi

Aims

Inherited or somatic mutations in the MRE11, RAD50 and NBN genes increase the incidence of tumours, including medulloblastoma (MB). On the other hand, MRE11, RAD50 and NBS1 protein components of the MRN complex are often overexpressed and sometimes essential in cancer. In order to solve the apparent conundrum about the oncosuppressive or oncopromoting role of the MRN complex, we explored the functions of NBS1 in an MB-prone animal model. Materials and

Conclusions

Our study indicates that Nbn is haploinsufficient for SHH-MB development whereas full NbnKO is epistatic on SHH-driven MB development, thus revealing a gene dosage-dependent effect of Nbn inactivation on SHH-MB development.

Methods

We generated and analysed the monoallelic or biallelic deletion of the Nbn gene in the context of the SmoA1 transgenic mouse, a Sonic Hedgehog (SHH)-dependent MB-prone animal model. We used normal and tumour tissues from these animal models, primary granule cell progenitors (GCPs) from genetically modified animals and NBS1-depleted primary MB cells, to uncover the effects of NBS1 depletion by RNA-Seq, by biochemical characterisation of the SHH pathway and the DNA damage response (DDR) as well as on the growth and clonogenic properties of GCPs.

Results

We found that monoallelic Nbn deletion increases SmoA1-dependent MB incidence. In addition to a defective DDR, Nbn+/- GCPs show increased clonogenicity compared to Nbn+/+ GCPs, dependent on an enhanced Notch signalling. In contrast, full NbnKO impairs MB development both in SmoA1 mice and in an SHH-driven tumour allograft. Conclusions: Our study indicates that Nbn is haploinsufficient for SHH-MB development whereas full NbnKO is epistatic on SHH-driven MB development, thus revealing a gene dosage-dependent effect of Nbn inactivation on SHH-MB development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。