The intraflagellar transport protein IFT52 associated with short-rib thoracic dysplasia is essential for ciliary function in osteogenic differentiation in vitro and for sensory perception in Drosophila

与短肋胸椎发育不良相关的纤毛内转运蛋白 IFT52 对体外成骨分化中的纤毛功能以及果蝇的感觉知觉至关重要

阅读:3
作者:Vishal Singh Guleria, Rahul Parit, Neha Quadri, Ranajit Das, Priyanka Upadhyai

Abstract

Primary cilia are non-motile sensory cell-organelle that are essential for organismal development, differentiation, and postnatal homeostasis. Their biogenesis and function are mediated by the intraflagellar transport (IFT) system. Pathogenic variants in IFT52, a central component of the IFT-B complex is associated with short-rib thoracic dysplasia with or without polydactyly 16 (SRTD16), with major skeletal manifestations, in addition to other features. Here we sought to examine the role of IFT52 in osteoblast differentiation. Using lentiviral shRNA interference Ift52 was depleted in C3H10T1/2 mouse mesenchymal stem cells. This led to the disruption of the IFT-B anterograde trafficking machinery that impaired primary ciliogenesis and blocked osteogenic differentiation. In Ift52 silenced cells, Hedgehog (Hh) pathway upregulation during osteogenesis was attenuated and despite Smoothened Agonist (SAG) based Hh activation, osteogenic differentiation was incompletely restored. Further we investigated IFT52 activity in Drosophila, wherein the only ciliated somatic cells are the bipolar sensory neurons of the peripheral nervous system. Knockdown of IFT52 in Drosophila neuronal tissues reduced lifespan with the loss of embryonic chordotonal cilia, and produced severe locomotion, auditory and proprioceptive defects in larva and adults. Together these findings improve our knowledge of the role of IFT52 in various physiological contexts and its associated human disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。