A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation

突触处协调的局部翻译控制点涉及缓解沉默和 MOV10 降解

阅读:8
作者:Sourav Banerjee, Pierre Neveu, Kenneth S Kosik

Abstract

Persistent changes in synaptic strength are locally regulated by both protein degradation and synthesis; however, the coordination of these opposing limbs is poorly understood. Here, we found that the RISC protein MOV10 was present at synapses and was rapidly degraded by the proteasome in an NMDA-receptor-mediated activity-dependent manner. We designed a translational trap to capture those mRNAs whose spatiotemporal translation is regulated by MOV10. When MOV10 was suppressed, a set of mRNAs--including alpha-CaMKII, Limk1, and the depalmitoylating enzyme lysophospholipase1 (Lypla1)--selectively entered the polysome compartment. We also observed that Lypla1 mRNA is associated with the brain-enriched microRNA miR-138. Using a photoconvertible translation reporter, Kaede, we analyzed the activity-dependent protein synthesis driven by Lypla1 and alpha-CaMKII 3'UTRs. We established this protein synthesis to be MOV10 and proteasome dependent. These results suggest a unifying picture of a local translational regulatory mechanism during synaptic plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。