SaLT&PepPr is an interface-predicting language model for designing peptide-guided protein degraders

SaLT&PepPr 是一种用于设计肽引导蛋白质降解剂的界面预测语言模型

阅读:8
作者:Garyk Brixi #, Tianzheng Ye #, Lauren Hong #, Tian Wang, Connor Monticello, Natalia Lopez-Barbosa, Sophia Vincoff, Vivian Yudistyra, Lin Zhao, Elena Haarer, Tianlai Chen, Sarah Pertsemlidis, Kalyan Palepu, Suhaas Bhat, Jayani Christopher, Xinning Li, Tong Liu, Sue Zhang, Lillian Petersen, Matthew P

Abstract

Protein-protein interactions (PPIs) are critical for biological processes and predicting the sites of these interactions is useful for both computational and experimental applications. We present a Structure-agnostic Language Transformer and Peptide Prioritization (SaLT&PepPr) pipeline to predict interaction interfaces from a protein sequence alone for the subsequent generation of peptidic binding motifs. Our model fine-tunes the ESM-2 protein language model (pLM) with a per-position prediction task to identify PPI sites using data from the PDB, and prioritizes motifs which are most likely to be involved within inter-chain binding. By only using amino acid sequence as input, our model is competitive with structural homology-based methods, but exhibits reduced performance compared with deep learning models that input both structural and sequence features. Inspired by our previous results using co-crystals to engineer target-binding "guide" peptides, we curate PPI databases to identify partners for subsequent peptide derivation. Fusing guide peptides to an E3 ubiquitin ligase domain, we demonstrate degradation of endogenous β-catenin, 4E-BP2, and TRIM8, and highlight the nanomolar binding affinity, low off-targeting propensity, and function-altering capability of our best-performing degraders in cancer cells. In total, our study suggests that prioritizing binders from natural interactions via pLMs can enable programmable protein targeting and modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。