BMPR1A is necessary for chondrogenesis and osteogenesis, whereas BMPR1B prevents hypertrophic differentiation

BMPR1A 是软骨形成和成骨所必需的,而 BMPR1B 可防止肥大性分化

阅读:6
作者:Tanja Mang, Kerstin Kleinschmidt-Doerr, Frank Ploeger, Andreas Schoenemann, Sven Lindemann, Anne Gigout

Abstract

BMP2 stimulates bone formation and signals preferably through BMP receptor (BMPR) 1A, whereas GDF5 is a cartilage inducer and signals preferably through BMPR1B. Consequently, BMPR1A and BMPR1B are believed to be involved in bone and cartilage formation, respectively. However, their function is not yet fully clarified. In this study, GDF5 mutants with a decreased affinity for BMPR1A were generated. These mutants, and wild-type GDF5 and BMP2, were tested for their ability to induce dimerization of BMPR1A or BMPR1B with BMPR2, and for their chondrogenic, hypertrophic and osteogenic properties in chondrocytes, in the multipotent mesenchymal precursor cell line C3H10T1/2 and the human osteosarcoma cell line Saos-2. Mutants with the lowest potency for inducing BMPR1A-BMPR2 dimerization exhibited minimal chondrogenic and osteogenic activities, indicating that BMPR1A is necessary for chondrogenic and osteogenic differentiation. BMP2, GDF5 and the GDF5 R399E mutant stimulated expression of chondrogenic and hypertrophy markers in C3H10T1/2 cells and chondrocytes. However, GDF5 R399E, which induces the dimerization of BMPR1B and BMPR2 more potently than GDF5 or BMP2, displayed reduced hypertrophic activity. Therefore, we postulate that stronger BMPR1B signaling, compared to BMPR1A signaling, prevents chondrocyte hypertrophy and acts as a cartilage stabilizer during joint morphogenesis.This article has an associated First Person interview with the first author of the paper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。