The VEGF-A inhibitor sFLT-1 improves renal function by reducing endothelial activation and inflammation in a mouse model of type 1 diabetes

VEGF-A 抑制剂 sFLT-1 通过减少 1 型糖尿病小鼠模型中的内皮活化和炎症来改善肾功能

阅读:5
作者:Pascal Bus, Marion Scharpfenecker, Priscilla Van Der Wilk, Ron Wolterbeek, Jan A Bruijn, Hans J Baelde

Conclusions/interpretation

These results suggest that sFLT-1 might be beneficial in treating diabetic nephropathy by inhibiting VEGF-A, thereby reducing endothelial activation and glomerular inflammation, and ultimately reversing kidney damage.

Methods

Subgroups of untreated 8-week-old female C57BL/6J control (n = 5) and diabetic mice (n = 7) were euthanised 5 weeks after the start of the experiment in order to determine the degree of kidney damage prior to treatment with sFLT-1. Diabetes was induced with three i.p. injections of streptozotocin (75 mg/kg) administered at 2 day intervals. Diabetic nephropathy was then investigated in diabetic mice transfected with sFlt-1 (n = 6); non-diabetic, non-transfected control mice (n = 5); non-diabetic control mice transfected with sFlt-1(n = 10); and non-transfected diabetic mice (n = 6). These mice were euthanised at the end of week 15. Transfection with sFlt-1 was performed in week 6.

Results

We found that transfection with sFlt-1 significantly reduced kidney damage by normalising albuminuria, glomerular hypertrophy and mesangial matrix content (i.e. glomerular collagen type IV protein levels) (p < 0.001). We also found that transfection with sFlt-1 reduced endothelial activation (p < 0.001), glomerular macrophage infiltration (p < 0.001) and glomerular TNF-α protein levels (p < 0.001). Finally, sFLT-1 decreased VEGF-A-induced endothelial activation in vitro (p < 0.001). Conclusions/interpretation: These results suggest that sFLT-1 might be beneficial in treating diabetic nephropathy by inhibiting VEGF-A, thereby reducing endothelial activation and glomerular inflammation, and ultimately reversing kidney damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。