Curcumin protects bone biomechanical properties and microarchitecture in type 2 diabetic rats with osteoporosis via the TGFβ/Smad2/3 pathway

姜黄素通过 TGFβ/Smad2/3 通路保护患有骨质疏松症的 2 型糖尿病大鼠的骨生物力学特性和微观结构

阅读:4
作者:Yanlong Liang, Benben Zhu, Shuhui Li, Yun Zhai, Yiqiu Yang, Zaixian Bai, Yuan Zeng, Dawei Li

Abstract

Type 2 diabetic osteoporosis (T2DOP) has become a common secondary cause of osteoporosis that accelerates bone loss and leads to bone fractures. The aim of the current study was to investigate the association between the anti-osteoporotic effect of curcumin (Cur) and the transforming growth factor (TGF)β/Smads signaling pathway. Male Sprague-Dawley rats were used in the experiments. The type 2 diabetes mellitus (T2DM) animals were treated with Cur for 8 weeks and blood lipid markers, bone microstructure and bone biomechanics were then evaluated. The mRNA expression levels of TGFβ1, type I TGFβ receptor (TβRI), TβRII and Smad2/3 were determined using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. The body weight of rats with type 2 diabetes-induced osteoporosis increased (P<0.05), while the lipid (total cholesterol, triglyceride and low-density lipoprotein) and fasting blood glucose levels were decreased by Cur (P<0.05). In addition, Cur significantly improved bone biomechanical properties (maximum load, breaking load, elastic load and the bone rigidity coefficient) and preserved bone microarchitecture (P<0.05). The RT-qPCR and IHC results revealed that Cur increased TGFβ1, TβRI, TβRII and Smad2/3 expression levels and promoted Smad2/3 phosphorylation in bones. The present results also indicated that Cur regulated lipid and glucose levels, improved bone biomechanical properties and preserved bone microarchitecture, and that these effects may be mediated via TGFβ/Smad2/3 pathway activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。