Ultrarare Missense Variants Implicated in Utah Pedigrees Multiply Affected With Schizophrenia

犹他州谱系中涉及的极其罕见的错义变异导致多人患上精神分裂症

阅读:4
作者:Cathal Ormond, Niamh M Ryan, Elizabeth A Heron, Michael Gill, William Byerley, Aiden Corvin

Background

Recent work from the Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) consortium showed significant enrichment of ultrarare variants in schizophrenia cases. Family-based studies offer a unique opportunity to evaluate rare variants because risk in multiplex pedigrees is more likely to be influenced by the same collection of variants than an unrelated cohort.

Conclusions

We have identified genes that are likely to increase schizophrenia risk in 3 of the 6 pedigrees examined, the strongest evidence being for a gene involved in calcium homeostasis. Further work is required to examine other classes of variants that may be contributing to disease burden.

Methods

Here, we examine whole genome sequencing data from 35 individuals across 6 pedigrees multiply affected by schizophrenia. We applied a rigorous filtering pipeline to search for classes of protein-coding variants that cosegregated with disease status, and we examined these for evidence of enrichment in the SCHEMA dataset. Additionally, we applied a family-based consensus approach to call copy number variants and screen against a list of schizophrenia-associated risk variants.

Results

We identified deleterious missense variants in 3 genes (ATP2B2, SLC25A28, and GSK3A) that cosegregated with disease in 3 of the pedigrees. In the SCHEMA, the gene ATP2B2 shows highly suggestive evidence for deleterious missense variants in schizophrenia cases (p = .000072). ATP2B2 is involved in intracellular calcium homeostasis, expressed in multiple brain tissue types, and predicted to be intolerant to loss-of-function and missense variants. Conclusions: We have identified genes that are likely to increase schizophrenia risk in 3 of the 6 pedigrees examined, the strongest evidence being for a gene involved in calcium homeostasis. Further work is required to examine other classes of variants that may be contributing to disease burden.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。