Stress modulates Ahi1-dependent nuclear localization of ten-eleven translocation protein 2

应激调节 Ahi1 依赖的十-十一易位蛋白 2 的核定位

阅读:8
作者:Qian Zhang, Qicheng Hu, Junjie Wang, Zhigang Miao, Ziyi Li, Yuwen Zhao, Bo Wan, Emily G Allen, Miao Sun, Peng Jin, Xingshun Xu

Abstract

Major depression disorder is one of the most common psychiatric diseases. Recent evidence supports that environmental stress affects gene expression and promotes the pathological process of depression through epigenetic mechanisms. Three ten-eleven translocation (Tet) enzymes are epigenetic regulators of gene expression that promote 5-hydroxymethylcytosine (5hmC) modification of genes. Here, we show that the loss of Tet2 can induce depression-like phenotypes in mice. Paradoxically, using the paradigms of chronic stress, such as chronic mild stress and chronic social defeat stress, we found that depressive behaviors were associated with increased Tet2 expression but decreased global 5hmC level in hippocampus. We examined the genome-wide 5hmC profile in the hippocampus of Tet2 knockout mice and identified 651 dynamically hydroxymethylated regions, some of which overlapped with known depression-associated loci. We further showed that chronic stress could induce the abnormal nuclear translocation of Tet2 protein from cytosol. Through Tet2 immunoprecipitation and mass spectrum analyses, we identified a cellular trafficking protein, Abelson helper integration site-1 (Ahi1), which could interact with Tet2 protein. Ahi1 knockout or knockdown caused the accumulation of Tet2 in cytosol. The reduction of Ahi1 protein under chronic stress explained the abnormal Ahi1-dependent nuclear translocation of Tet2. These findings together provide the evidence for a critical role of modulating Tet2 nuclear translocation in regulating stress response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。