A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production

微绿球藻 CCMP1779 工具包可实现二十碳五烯酸途径的基因堆叠和基因工程,从而增强长链多不饱和脂肪酸的产量

阅读:3
作者:Eric Poliner, Jane A Pulman, Krzysztof Zienkiewicz, Kevin Childs, Christoph Benning, Eva M Farré

Abstract

Nannochloropsis oceanica is an oleaginous microalga rich in ω3 long-chain polyunsaturated fatty acids (LC-PUFAs) content, in the form of eicosapentaenoic acid (EPA). We identified the enzymes involved in LC-PUFA biosynthesis in N. oceanica CCMP1779 and generated multigene expression vectors aiming at increasing LC-PUFA content in vivo. We isolated the cDNAs encoding four fatty acid desaturases (FAD) and determined their function by heterologous expression in S. cerevisiae. To increase the expression of multiple fatty acid desaturases in N. oceanica CCMP1779, we developed a genetic engineering toolkit that includes an endogenous bidirectional promoter and optimized peptide bond skipping 2A peptides. The toolkit also includes multiple epitopes for tagged fusion protein production and two antibiotic resistance genes. We applied this toolkit, towards building a gene stacking system for N. oceanica that consists of two vector series, pNOC-OX and pNOC-stacked. These tools for genetic engineering were employed to test the effects of the overproduction of one, two or three desaturase-encoding cDNAs in N. oceanica CCMP1779 and prove the feasibility of gene stacking in this genetically tractable oleaginous microalga. All FAD overexpressing lines had considerable increases in the proportion of LC-PUFAs, with the overexpression of Δ12 and Δ5 FAD encoding sequences leading to an increase in the final ω3 product, EPA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。