Cobalt Ferrite Surface-Modified Carbon Nanotube Fibers as an Efficient and Flexible Electrode for Overall Electrochemical Water Splitting Reactions

钴铁氧体表面改性碳纳米管纤维作为全电化学水分解反应的高效柔性电极

阅读:4
作者:Aneesa Fatima, Haia Aldosari, M S Al-Buriahi, Maryam Al Huwayz, Z A Alrowaili, Mohammed S Alqahtani, Muhammad Ajmal, Arif Nazir, Munawar Iqbal, Raqiqa Tur Rasool, Sheza Muqaddas, Abid Ali

Abstract

One of the most practical and environmentally friendly ways to deal with the energy crises and global warming is to produce hydrogen as clean fuel by splitting water. The central obstacle for electrochemical water splitting is the use of expensive metal-based catalysts. For electrocatalytic hydrogen production, it is essential to fabricate an efficient catalyst for the counterpart oxygen evolution reaction (OER), which is a four-electron-transfer sluggish process. Here in this study, we have successfully fabricated cobalt-based ferrite nanoparticles over the surface of carbon nanotube fiber (CNTF) that was utilized as flexible anode materials for the OER and overall electrochemical water splitting reactions. Scanning electron microscopy images with elemental mapping showed the growth of nanoparticles over CNTF, while electrochemical characterization exhibited excellent electrocatalytic performance. Linear sweep voltammetry revealed the reduced overpotential value (260 mV@η10mAcm-2) with a small Tafel slope of 149 mV dec-1. Boosted electrochemical double layer capacitance (0.87 mF cm-2) for the modified electrode also reflects the higher surface area as compared to pristine CNTF (Cdl = 0.022 mF cm-2). Charge transfer resistance for the surface-modified CNTF showed the lower diameter in the Nyquist plot and was consequently associated with the better Faradaic process at the electrode/electrolyte interface. Overall, the as-fabricated electrode could be a promising alternative for the efficient electrochemical water splitting reaction as compared to expensive metal-based electrocatalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。