Design, Synthesis, Pharmacological Activities, Structure-Activity Relationship, and In Silico Studies of Novel 5-Substituted-2-(morpholinoimino)-thiazolidin-4-ones

新型 5-取代-2-(吗啉亚氨基)-噻唑烷-4-酮的设计、合成、药理活性、构效关系及计算机模拟研究

阅读:6
作者:Yusuf Sıcak, Bedriye Seda Kurşun Aktar, Gizem Tatar Yılmaz, Fatma Aydoğmuş Öztürk, Mehmet Öztürk, Tuğba Taşkın Tok, Emine Elçin Oruç Emre

Abstract

This study is aimed to synthesize morpholine- and thiazolidine-based novel 5-(substituted)benzylidene)-2-(morpholinoimino)-3-phenylthiazolidin-4-ones (3-26) and characterized by molecular spectroscopy. The synthesized compounds were subjected to antioxidant activity with anticholinesterase, tyrosinase, and urease inhibition activities and evaluated the structure-activity relationship (SAR) of enzyme inhibition activities. Compound 11 was found to be the most active antioxidant. In anticholinesterase inhibition, compound 12 (IC50: 17.41 ± 0.22 μM) was the most active against AChE, while compounds 3-26 ( except 3, 8, and 17) showed notable activity against BChE. Compounds 17 (IC50: 3.22 ± 0.70 mM), 15 (IC50: 5.19 ± 0.03 mM), 24 (IC50: 7.21 ± 0.27 mM), 23 (IC50: 8.05 ± 0.11 mM), 14 (IC50: 8.10 ± 0.22 mM), 25 (IC50: 8.40 ± 0.64 mM), 26 (IC50: 8.76 ± 0.90 mM), and 22 (IC50: 9.13 ± 0.55 mM) produced higher tyrosinase inhibition activity. In urease inhibition activity, compounds 20 (IC50: 16.79 ± 0.19 μM), 19 (IC50: 18.25 ± 0.50 μM), 18 (IC50: 20.24 ± 0.77 μM), 26 (IC50: 21.51 ± 0.44 μM), 25 (IC50: 21.70 ± 0.06 μM), and 24 (IC50: 22.49 ± 0.11 μM) demonstrated excellent activities. Besides, the molecular docking study was applied to better understand the inhibitory mechanism between (1-26) compounds and enzymes at the molecular level. According to the results of this study, the synthesized compounds exhibited a better binding affinity toward these enzymes compared to the positive control. Further, molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) binding free energy and molecular dynamics (MD) simulation analyses were performed for AChE with compound 26, which showed high inhibitory activity in silico and in vitro studies. In conclusion, novel morpholine and thiazolidine-based derivative compounds may be pharmacologically effective agents for AChE, BChE, tyrosinase, and urease enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。