Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice

重组神经调节蛋白 1 不会激活正常或梗塞成年小鼠的心肌细胞 DNA 合成

阅读:4
作者:Sean Reuter, Mark H Soonpaa, Anthony B Firulli, Audrey N Chang, Loren J Field

Results

Adult mice were subjected to 9 consecutive daily injections of recombinant NRG1β1 or vehicle, and cardiomyocyte DNA synthesis was quantitated via bromodeoxyuridine (BrdU) incorporation, which was delivered using mini-osmotic pumps over the entire duration of NRG1β1 treatment. NRG1β1 treatment inhibited baseline rates of cardiomyocyte DNA synthesis in normal mice (cardiomyocyte labelling index: 0.019±0.005% vs. 0.003±0.001%, saline vs. NRG1β1, P<0.05). Acute NRG1β1 treatment did result in activation of Erk1/2 and cardiac myosin regulatory light chain (down-stream mediators of neuregulin signalling), as well as activation of DNA synthesis in non-cardiomyocytes, validating the biological activity of the recombinant protein. In other studies, mice were subjected to permanent coronary artery occlusion, and cardiomyocyte DNA synthesis was monitored via tritiated thymidine incorporation which was delivered as a single injection 7 days post-infarction. Daily NRG1β1 treatment had no impact on cardiomyocyte DNA synthesis in the infarcted myocardium (cardiomyocyte labelling index: 0.039±0.011% vs. 0.027±0.021%, saline vs. NRG1β1, P>0.05). Summary: These data indicate that NRG1β1 treatment does not increase cardiomyocyte DNA synthesis (and consequently does not increase the rate of cardiomyocyte renewal) in normal or infarcted adult mouse hearts. Thus, any improvement in cardiac structure and function observed following neuregulin treatment of injured hearts likely occurs independently of overt myocardial regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。