Blockade of CCN6 (WISP3) activates growth factor-independent survival and resistance to anoikis in human mammary epithelial cells

CCN6(WISP3)阻断可激活人类乳腺上皮细胞中不依赖生长因子的存活和对细胞凋亡的抵抗力

阅读:6
作者:Wei Huang, Maria E Gonzalez, Kathy A Toy, Mousumi Banerjee, Celina G Kleer

Abstract

CCN6 is a secreted cysteine-rich matricellular protein (36.9 kDa) that exerts growth-inhibitory functions in breast cancer. Reduction or loss of CCN6 protein has been reported in invasive carcinomas of the breast with lymph node metastasis and in inflammatory breast cancer. However, the mechanism by which CCN6 loss promotes breast cancer growth remains to be defined. In the present study, we developed lentiviral-mediated short hairpin RNA CCN6 knockdown (KD) in nontumorigenic mammary epithelial cells MCF10A and HME. We discovered that CCN6 KD protects mammary epithelial cells from apoptosis and activates growth factor-independent survival. In the absence of exogenous growth factors, CCN6 KD was able to promote growth under anchorage-independent conditions and triggered resistance to detachment-induced cell death (anoikis). On serum starvation, CCN6 KD was sufficient for activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Growth factor-independent cell survival was stunted in CCN6 KD cells when treated with either human recombinant CCN6 protein or the PI3K inhibitor LY294002. Targeted inhibition of Akt isoforms revealed that the survival advantage rendered by CCN6 KD requires specific activation of Akt-1. The relevance of our studies to human breast cancer is highlighted by the finding that low CCN6 protein levels are associated with upregulated expression of phospho-Akt-1 (Ser(473)) in 21% of invasive breast carcinomas. These results enable us to pinpoint one mechanism by which CCN6 controls survival of breast cells mediated by the PI3K/Akt-1 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。