Highly efficient identification of nucleocytoplasmic O-glycosylation by the TurboID-based proximity labeling method in living cells

利用基于 TurboID 的邻近标记方法高效识别活细胞中的核质 O-糖基化

阅读:8
作者:Yunfeng Long, Zhunjie Li, Long Wang, Xin Ao, Zhengrong Zhang, Qingjie Chen, Dan Zhu, Xinghui Liu, Ruolan Liu, Banghang Chen, He Zhu, Yanting Su

Abstract

Glycosylation is a ubiquitous posttranslational modification and plays an important role in many processes, such as protein stability, folding, processing, and trafficking. Among glycosylation types, O-glycosylation is difficult to analyze due to the complex glycan composition, low abundance and lack of glycosidases to remove the O-glycans. Many methods have been applied to analyze the O-glycosylation of membrane glycoproteins and secreted glycoproteins since the synthesis of O-glycosylation occurred in the Golgi apparatus. In recent years, some O-glycosylation has been reported in the nucleus. In this work, we present a proximity labeling strategy based on TurboID by combining core 1 β1-3 galactosyltransferase (C1GalT1), which has been reported in the nucleus, to characterize nucleocytoplasmic O-glycosylation in living HeLa cells. The O-glycosylated protein C1GalT1 was biotinylated by the proximity labeling method in living HeLa cells overexpressing C1GalT1 fused by TurboID and enriched by streptavidin-coated beads. Following digestion with trypsin and mass spectrometry analysis, 68 high-confidence and 298 putative O-glycosylated sites were identified on 366 peptides mapped to 267 proteins. These results indicated that the proximity labeling method is a highly efficient technique to identify O-glycosylation. Furthermore, the finding of abundant O-glycosylation from nucleocytoplasmic proteins indicates a new pathway of O-glycosylation synthesis in cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。