Conclusions
This user-friendly reprogramming approach paves the way for the development of hiPSC derivations in industrial applications of disease modeling and drug screening.
Results
We previously reported that chemical inhibition of the NOTCH signaling pathway and DOT1L promoted the generation of hiPSCs from keratinocytes, but the mechanisms and effect of this double inhibition on other types of cells remain to be investigated. Here, we found that the NOTCH/DOT1L inhibition markedly increased iPSC colony generation from human fibroblast cells via mRNA reprogramming, and mesenchymal to epithelial transition (MET)-related genes are significantly expressed in the early phase of the reprogramming. We successfully derived hiPSC lines using a single-cell sorting system under efficient reprogramming conditions. Conclusions: This user-friendly reprogramming approach paves the way for the development of hiPSC derivations in industrial applications of disease modeling and drug screening.
