Ketogenic Diet Elicits Antitumor Properties through Inducing Oxidative Stress, Inhibiting MMP-9 Expression, and Rebalancing M1/M2 Tumor-Associated Macrophage Phenotype in a Mouse Model of Colon Cancer

生酮饮食通过诱导氧化应激、抑制 MMP-9 表达和重新平衡小鼠结肠癌模型中的 M1/M2 肿瘤相关巨噬细胞表型来发挥抗肿瘤特性

阅读:11
作者:Ning Zhang, Chunhong Liu, Li Jin, Ruiyan Zhang, Ting Wang, Qingpeng Wang, Jingchao Chen, Fang Yang, Hans-Christian Siebert, Xuexing Zheng

Abstract

Many advanced cancers are characterized by metabolic disorders. A dietary therapeutic strategy was proposed to inhibit tumor growth through administration of low-carbohydrate, average-protein, and high-fat diet, which is also known as ketogenic diet (KD). In vivo antitumor efficacy of KD on transplanted CT26+ tumor cells in BALB/c mice was investigated. The results showed that the KD group had significantly higher blood β-hydroxybutyrate and lower blood glucose levels when compared with the normal diet group. Meanwhile, KD increased intratumor oxidative stress, and TUNEL staining showed KD-induced apoptosis against tumor cells. Interestingly, the distribution of CD16/32+ and iNOS+ M1 tumor-associated macrophages (TAMs) increased in the KD-treated group, with concomitantly less arginase-1+ M2 TAMs. Moreover, KD treatment downregulated the protein expression of matrix metalloproteinase-9 in CT26+ tumor-bearing mice. Western blot analysis demonstrated that the expression levels of HDAC3/PKM2/NF-κB 65/p-Stat3 proteins were reduced in the KD-treated group. Taken together, our results indicated that KD can prevent the progression of colon tumor via inducing intratumor oxidative stress, inhibiting the expression of the MMP-9, and enhancing M2 to M1 TAM polarization. A novel potential mechanism was identified that KD can prevent the progression of colon cancer by regulating the expression of HDAC3/PKM2/NF-κB65/p-Stat3 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。