Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli

扩大强制 ATP 消耗的范围作为大肠杆菌代谢工程的工具

阅读:7
作者:Simon Boecker, Ahmed Zahoor, Thorben Schramm, Hannes Link, Steffen Klamt

Abstract

The targeted increase of cellular adenosine triphosphate (ATP) turnover (enforced ATP wasting) has recently been recognized as a promising tool for metabolic engineering when product synthesis is coupled with net ATP formation. The goal of the present study is to further examine and to further develop the concept of enforced ATP wasting and to broaden its scope for potential applications. In particular, considering the fermentation products synthesized by Escherichia coli under anaerobic conditions as a proxy for target chemical(s), i) a new genetic module for dynamic and gradual induction of the F1 -part of the ATPase is developed and it is found that ii) induction of the ATPase leads to higher metabolic activity and increased product formation in E. coli under anaerobic conditions, and that iii) ATP wasting significantly increases substrate uptake and productivity of growth-arrested cells, which is vital for its use in two-stage processes. To the best of the authors' knowledge, the glucose uptake rate of 6.49 mmol gCDW-1 h-1 achieved with enforced ATP wasting is the highest value reported for nongrowing E. coli cells. In summary, this study shows that enforced ATP wasting can be used to improve yield and titer (in growth-coupled processes) as well as volumetric productivity (in two-stage processes) depending on which of the performance measures is more crucial for the process and product of interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。