Exploring the Potential of Thymoquinone-Stabilized Selenium Nanoparticles: In HEC1B Endometrial Cancer Cells Revealing Enhanced Anticancer Efficacy

探索百里香醌稳定的硒纳米粒子的潜力:在 HEC1B 子宫内膜癌细胞中显示出增强的抗癌功效

阅读:8
作者:Gonca Gulbay, Mucahit Secme, Hasan Ilhan

Abstract

The aim of this research is to examine the potential anticancer properties of thymoquinone (TQ)-encapsulated selenium nanoparticles (TQ-SeNPs) in HEC1B endometrial carcinoma cells. TQ-SeNPs were synthesized, and their size, morphology, and elemental analysis were characterized. Morphological changes were examined by using scanning electron microscopy (SEM). The cytotoxicity and viability of nanothymoquinone were assessed by the XTT (2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5 carboxanilide) assay. Gene expressions and protein levels of the mitogen-activated protein kinase (MAPK) signaling pathway were analyzed by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The decrease in the viability of HEC1B endometrial carcinoma cells was observed in a time- and dose-dependent manner. HEC-1B cells were treated with TQ-SeNP at 40-640 μg/mL concentrations and time intervals, and their viability was assessed by XTT assay. IC50 doses of TQ-SeNP in HEC1B cells were detected as 526.45 μg/mL at 48th hour. ELISA indicated that TQ-SeNP treatment reduced the level of p38 MAPK. ERK2, MEK2, and NFKB (p65) mRNA expressions were decreased in the dose group administered TQ-SeNP at the 48th hour compared to that in the control group. However, it was not significant. The novel nanoparticle showed an antiproliferative effect in endometrial cancer cells. However, further studies are needed to increase the anticancer activity of the cell in the TQ-SeNP interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。