Revealing Interfacial Reactions on Pt Electrodes in Ionic Liquids by In Situ Fourier-Transform Infrared Spectroscopy

通过原位傅里叶变换红外光谱揭示离子液体中 Pt 电极的界面反应

阅读:17
作者:Yingzhen Chen, Christian Rodenbücher, Klaus Wippermann, Carsten Korte

Abstract

In situ monitoring of the electrolyte/electrode interfacial processes, such as the oxygen reduction reaction (ORR), is crucial for the design of electrolytes for fuel cells. In this study, we investigate the electrochemical behavior of platinum electrodes in protic ionic liquids (PILs) by means of in situ Fourier-transform infrared spectroscopy coupled with cyclic voltammetry. The result provides direct evidence of the change of water at the Pt electrode surface due to Pt oxide formation and reduction. A decrease in the interfacial water was observed in the spectra upon the formation of the Pt oxide. Conversely, the local water concentration at the electrode surface increases if the Pt oxide is reduced and the ORR takes place. At the same time, more cations replace anions on the electrode. The ORR kinetics in the [TFSI]-based PILs is slower than in the [TfO]-based ones, which could result from a blockage of catalytic sites by the adsorbed [TFSI] anions. It suggests that reducing the anion adsorption on the platinum surface could provide an opportunity to enhance the ORR activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。