Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells

γ-氨基丁酸 (GABA) 是人类胰腺 β 细胞中的一种自分泌兴奋性递质

阅读:16
作者:Matthias Braun, Reshma Ramracheya, Martin Bengtsson, Anne Clark, Jonathan N Walker, Paul R Johnson, Patrik Rorsman

Conclusions

Signaling via GABA and GABA(A)R constitutes an autocrine positive feedback loop in human beta-cells. The presence of GABA(A)R in non-beta-cells suggests that GABA may also be involved in the regulation of somatostatin and glucagon secretion.

Methods

Expression of GABA(A)Rs in islet cells was investigated by quantitative PCR, immunohistochemistry, and patch-clamp experiments. Hormone release was measured from intact islets. GABA release was monitored by whole-cell patch-clamp measurements after adenoviral expression of alpha(1)beta(1) GABA(A)R subunits. The subcellular localization of GABA was explored by electron microscopy. The effects of GABA on electrical activity were determined by perforated patch whole-cell recordings.

Objective

Paracrine signaling via gamma-aminobutyric acid (GABA) and GABA(A) receptors (GABA(A)Rs) has been documented in rodent islets. Here we have studied the importance of GABAergic signaling in human pancreatic islets. Research design and

Results

PCR analysis detected relatively high levels of the mRNAs encoding GABA(A)R alpha(2), beta(3,) gamma(2), and pi subunits in human islets. Patch-clamp experiments revealed expression of GABA(A)R Cl(-) channels in 52% of beta-cells (current density 9 pA/pF), 91% of delta-cells (current density 148 pA/pF), and 6% of alpha-cells (current density 2 pA/pF). Expression of GABA(A)R subunits in islet cells was confirmed by immunohistochemistry. beta-Cells secreted GABA both by glucose-dependent exocytosis of insulin-containing granules and by a glucose-independent mechanism. The GABA(A)R antagonist SR95531 inhibited insulin secretion elicited by 6 mmol/l glucose. Application of GABA depolarized beta-cells and stimulated action potential firing in beta-cells exposed to glucose. Conclusions: Signaling via GABA and GABA(A)R constitutes an autocrine positive feedback loop in human beta-cells. The presence of GABA(A)R in non-beta-cells suggests that GABA may also be involved in the regulation of somatostatin and glucagon secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。