Pharmacological and genetic accumulation of hypoxia-inducible factor-1alpha enhances excitatory synaptic transmission in hippocampal neurons through the production of vascular endothelial growth factor

缺氧诱导因子-1alpha 的药理学和遗传积累通过产生血管内皮生长因子增强海马神经元的兴奋性突触传递

阅读:5
作者:Yu-Fei Huang, Chih-Hao Yang, Chiung-Chun Huang, Ming-Hong Tai, Kuei-Sen Hsu

Abstract

Hypoxia-inducible factor-1 (HIF-1) is an important transcriptional factor in mammalian cells for coordination of adaptive responses to hypoxia. It consists of a regulatory subunit HIF-1alpha, which accumulates under hypoxic conditions, and a constitutively expressed subunit HIF-1beta. In addition to the well characterized oxygen-dependent mode of action of HIF-1, recent work has shown that various growth factors and cytokines stimulate HIF-1alpha expression, thereby triggering transcription of numerous hypoxia-inducible genes by oxygen-independent mechanisms. In this study, we examined whether accumulation of HIF-1alpha induced by insulin-like growth factor-1 (IGF-1) has a regulatory role in excitatory synaptic transmission in hippocampal neuron cultures. Our results show that IGF-1 induced a time- and dose-dependent increase in HIF-1alpha expression that was blocked by pretreatment with selective IGF-1 receptor antagonist, transcriptional inhibitor, and translational inhibitors. In addition, pharmacological blockade of the phosphatidylinositol 3-kinase/Akt/mammalian target of the rapamycin signaling pathway, but not extracellular signal-regulated kinase, inhibited IGF-1-induced HIF-1alpha expression. More importantly, the increase in HIF-1alpha expression induced by IGF-1 was accompanied by increasing levels of vascular endothelial growth factor (VEGF) mRNA and protein, which enhanced excitatory synaptic transmission. In parallel, blockade of HIF-1alpha activity by echinomycin or lentiviral infection with dominant-negative mutant HIF-1alpha or short hairpin RNA targeting HIF-1alpha inhibited the increase in expression of VEGF and the enhancement of synaptic transmission induced by IGF-1. Conversely, transfection of constitutively active HIF-1alpha into neurons mimicked the effects of IGF-1 treatment. Together, these results suggest that HIF-1alpha accumulation can enhance excitatory synaptic transmission in hippocampal neurons by regulating production of VEGF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。