Multilayered inorganic-organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions

多层无机-有机微盘作为高磁热驱动的理想载体:组装无偶极相互作用的亚铁磁性纳米粒子

阅读:5
作者:Idoia Castellanos-Rubio, Rahul Munshi, Yueling Qin, David B Eason, Iñaki Orue, Maite Insausti, Arnd Pralle

Abstract

The two major limitations for nanoparticle based magnetic hyperthermia in theranostics are the delivery of a sufficient number of magnetic nanoparticles (MNPs) with high heating power to specific target cells and the residence time of the MNPs at the target location. Ferromagnetic or Ferrimagnetic single domain nanoparticles (F-MNPs), with a permanent magnetic dipole, produce larger magnetic and thermal responses than superparamagnetic nanoparticles (SP-MNPs) but also agglomerate more. MNP agglomeration degrades their heating potential due to dipolar interaction effects and interferes with specific targeting. Additionally, MNPs bound to cells are often endocytosed by the cells or, in vivo, cleared out by the immune system via uptake in macrophages. Here, we present a versatile approach to engineer inorganic-polymeric microdisks, loaded with biomolecules, fluorophores and Fe3O4 F-MNPs that solves both challenges. These microdisks deliver the F-MNPs efficiently, while controlling any undesirable agglomeration and dipolar interaction, while also rendering the F-MNPs endocytosis resistant. We show that these micro-devices are suitable carriers to transport a flat assembly of F-MNPs to the cell membrane unchanged, preserving the magnetic response of the MNPs in any biological environment. The F-MNPs concentration per microdisk and degree of MNP interaction are tunable. We demonstrate that the local heat generated in microdisks is proportional to the surface density of F-MNPs when attached to the cell membrane. The key innovation in the production of these microdisks is the fabrication of a mushroom-shaped photolithographic template that enables easy assembly of the inorganic film, polymeric multilayers, and MNP cargo while permitting highly efficient lift-off of the completed microdisks. During the harvesting of the flat microdisks, the supporting mushroom-shaped templates are sacrificed. These resulting magnetic hybrid microdisks are tunable and efficient devices for magnetothermal actuation and hyperthermia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。