Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS

脱落酸通过将 SnRK2 激酶介导的磷酸化密码印记在主调节因子 SPEECHLESS 上来调节气孔的产生

阅读:6
作者:Xin Yang, Lalitha Gavya S, Zimin Zhou, Daisuke Urano, On Sun Lau

Abstract

Stomata, the epidermal pores for gas exchange between plants and the atmosphere, are the major sites of water loss. During water shortage, plants limit the formation of new stoma via the phytohormone abscisic acid (ABA) to conserve water. However, how ABA suppresses stomatal production is largely unknown. Here, we demonstrate that three core SnRK2 kinases of ABA signaling inhibit the initiation and proliferation of the stomatal precursors in Arabidopsis. We show that the SnRK2s function within the precursors and directly phosphorylate SPEECHLESS (SPCH), the master transcription factor for stomatal initiation. We identify specific SPCH residues targeted by the SnRK2s, which mediate the ABA/drought-induced suppression of SPCH and stomatal production. This SnRK2-specific SPCH phosphocode connects stomatal development with ABA/drought signals and enables the independent control of this key water conservation response. Our work also highlights how distinct signaling activities can be specifically encoded on a master regulator to modulate developmental plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。