Involvement of the Akt-dependent CREB signaling pathway in hydrogen-peroxide-induced early growth response protein-1 expression in rat vascular smooth muscle cells 1

Akt依赖的CREB信号通路参与过氧化氢诱导的大鼠血管平滑肌细胞早期生长反应蛋白-1的表达1

阅读:6
作者:Vincent Rondeau, Ashish Jain, Vanessa Truong, Ashok K Srivastava

Abstract

Increased generation of reactive oxygen species is believed to play a key role in the pathophysiology of cardiovascular diseases. Excessive growth and proliferation of vascular smooth muscle cells (VSMCs) have been suggested to be major contributors to vascular dysfunction. Potential involvement of early growth response protein-1 (Egr-1), a zinc finger transcription factor, in the development of vascular diseases has been suggested. Recent studies have shown that the reactive oxygen species hydrogen peroxide (H2O2) increases Egr-1 expression in VSMCs; however, signaling events leading to H2O2-induced Egr-1 expression are not fully understood. Therefore, we aimed to determine the signaling pathways implicated in H2O2-induced Egr-1 expression in rat VSMCs. Pharmacological blockade of the phosphatidylinositol 3-kinase/Akt pathway by wortmannin or SC66 significantly inhibited the protein and mRNA levels of Egr-1 induced by H2O2. H2O2-induced Egr-1 expression was associated with increased phosphorylation of cyclic AMP response element-binding (CREB) protein, and pharmacological inhibition or silencing of Akt attenuated both H2O2-induced CREB phosphorylation and Egr-1 expression. Moreover, RNA interference-mediated depletion of CREB almost completely suppressed the stimulatory effect of H2O2 on Egr-1 expression. Pharmacological blockade or silencing of c-Src resulted in significant suppression of H2O2-induced Egr-1 expression as well as Akt and CREB phosphorylation. These data show that H2O2 enhances the expression of Egr-1, which was associated with increased phosphorylation of Akt, and H2O2 triggers its effects on Egr-1 expression through c-Src-mediated Akt and CREB-dependent signaling events in VSMCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。